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We study the effects of quenched disorder on the two-dimensional d-wave superconductors �SCs� at zero
temperature by Monte Carlo simulations. The model is defined on the three-dimensional �3D� lattice and the
SC pair field is put on each spatial link as motivated in the resonating-valence-bond theory of the high-Tc SCs.
For the nonrandom case, the model exhibits a second-order phase transition to a SC state as density of charge
carriers is increased. It belongs to the universality class different from that of the 3D XY model. Quenched
disorders �impurities� are introduced both in the hopping amplitude and the plaquette term of pair fields. Then
the second-order transition disappears at a critical concentration of quenched disorder, pc�15%. Implication of
the results to cold atomic systems in optical lattices is also discussed.
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Effects of disorder on phase structures and phase transi-
tions have been studied for various systems. In particular, the
high-Tc materials are microscopically highly nonuniform and
it is suggested that there exists a spin-glass-like phase near
the phase transition point of superconductivity �SC� at low
temperatures �T�.1 Furthermore, existence of a Bose glass
was recently suggested in the Mott-insulating phase of cold
atomic systems in random potentials.2 In the present paper,
being motivated in part by these observations, we shall study
effects of quenched disorders on SCs by using a lattice
Ginzburg-Landau �GL� model of unconventional d-wave
SCs. The model in its pure case was introduced as the GL
theory of the resonating-valence-bond �RVB� field for the t-J
model,3 and the case of including interaction with the elec-
tromagnetic �EM� field has been investigated recently.4 We
expect that this model also describes superfluid phase of fer-
mionic atoms in cold atomic systems in optical lattices.
There, the effects of disorders can be investigated well under
control.5

We are interested in quantum SC phase transition of the
two-dimensional �2D� model at T=0. The model in path-
integral representation is described in terms of the following
RVB-type Cooper pair field Uxj,

Uxj � ��x+j,↑�x↓ − �x+j,↓�x↑� , �1�

where x�x0 ,x1 ,x2� is the site of the three-dimensional �3D�
cubic lattice of size V=L3 with periodic boundary condition
and j=1,2 denotes the spatial direction and also the unit
vector in jth direction. �x� is the electron annihilation opera-
tor at site x and spin �= ↑ ,↓. In the dx2−y2-wave SC, the
Cooper pair amplitudes in x=x1 and y=x2 have the opposite
signatures as �Ux1Ux2

† ��0.
Below we shall neglect the effects of the EM field and

focus on the effects of quenched disorders. The action of the
clean system is then given as follows:

A = g�
x

�c2Ūx2Ux+2,1Ūx+1,2Ux1 + c3�Ūx+1,2Ux1 + Ux+2,1Ūx+1,2

+ Ūx2Ux+2,1 + Ux1Ūx2� + c4�Ūx+2,1Ux1 + Ūx+1,2Ux2�

+ c5�Ūx+0,1Ux1 + Ūx+0,2Ux2� + c.c.	 , �2�

where we consider the London limit and set Uxj a U�1� vari-
able, Uxj =exp�i�xj�, �xj � �−� ,��. The overall factor g plays
a role of 1 /� and controls quantum fluctuations. When we fix
ci, g can be taken as an increasing function of the carrier
concentration �. �In the t-J model � is the hole density.� The
c2 terms controls fluctuation of flux of Uxj’s around each
spatial plaquette. The c3 and c4 terms represent the spatial
hopping of Uxj, whereas the c5 term describes the hopping in
the imaginary-time �0th� direction. The partition function Z
is given by Z=
�dU	exp�A�, �dU	=�x,jd�xj / �2��. We con-
sider the parameter region c3�0 to expect �Ux1Ux2

† ��0, al-
though Z�c3�=Z�−c3� because of the change of variables
Ux1→−Ux1. The action A is related to the action AHiggs of the
U�1� Higgs gauge theory that is obtained from Eq. �2� by the
replacement Uxj→ 	̄x+jUxj	x, where 	x=exp�i
x� is the
U�1� Higgs field. AHiggs is invariant under time-independent
local gauge transformation 
x→
x+�x, �xj→�xj +�x+j −�x,
where �x�x1,x2� is an x0-independent function. Actually, A is
viewed as the gauge-fixed version of AHiggs in the unitary
gauge 	x=1.

Quenched disorder is introduced in the system �2� by re-
placing the coefficients c2,3,4 as spatial-plaquette dependent
ones. First, we consider the 2D spatial plane with fixed x0,
say x0=0. Among L2 plaquettes in the plane we choose p
�L2 plaquettes randomly as ones at which impurities reside.
We call it a sample. We consider that the configuration of
“wrong” plaquettes is x0 independent because the location of
impurities is fixed along the imaginary time. Then we reverse
the values of c2,3,4 for interaction terms contained in these
plaquettes.6 Thus the new plaquette-dependent coefficients
c2,3,4

p are given by
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c2,3,4
p = �c2,3,4 with probability 1 − p

− c2,3,4 with probability p
 �3�

for each spatial plaquette. Please note c5
p=c5. Then the par-

tition function Zp and the free energy Fp per site of one
sample are given by

Zp =� �dU	exp�Ap� = exp�− VFp� , �4�

where Ap is obtained from Eq. �2� by replacing ci by ci
p. To

obtain an ensemble average �O� of an observable O��Uxj�� in
the disordered system, we first prepare Ns samples and cal-
culate the quantum-mechanical average �O�s for the sth
sample �s=1, . . . ,Ns�. Then we average it over samples

�O� =
1

Ns
�
s=1

Ns

�O�s,�O�s = Zps

−1� �dU	O exp�Aps
� . �5�

For the MC simulations, we used the standard METROPO-

LIS algorithm.7 The typical statistics used was 105 sweeps per
block and the average and MC errors were estimated over ten
blocks for each sample. Then we take quenched averages
over Ns=30�50 samples. We estimated standard deviation

of physical quantities such as “specific heat” over samples
�we call it sample error� as a function of Ns, which becomes
stable for Ns30.

Let us first consider the nonrandom case, p=0. We stud-
ied the phase structure by calculating the “internal energy”
per site E=−�A� /V and the “specific heat” per site C= ��A
− �A��2� /V. Typical behavior of C is shown in Fig. 1, which
indicates a second-order phase transition at g=gc�0.154.
This transition has been predicted in Ref. 3 and also ob-
served in the presence of the EM gauge interactions.4 In
order to verify that it is a transition to a SC phase, we mea-
sured the correlation function of Uxj, the order parameter
field of SC

G�r� =
1

4V
�

x,i�j

�ŪxjUx+ri,j� + c.c. �6�

We present G�r� in Fig. 2. It is obvious that there exists SC
long-range order �LRO� for g�gc, whereas no LRO for g
�gc.

8 Therefore the observed transition is nothing but the
SC phase transition.

The critical exponents for c2,4,5=−c3=1 were estimated
by the finite-size scaling analysis for C. We obtained �=1.5,
�=0.285, and the critical coupling g�=0.153. When c2=c3
=0, the system �2� reduces to a set of decoupled 2D XY spin
models �Uxj plays the role of an XY spin	, each of which has
the Kosterlitz-Thouless transition. The c2 and c3 terms
couple these 2D XY spins. From the above values of critical
exponents, we judge that the present phase transition does
not belong to the universality class of the 3D XY model
having �=0.6721�13�.9

Let us next turn to the random case, p�0. At first, we
consider the gc2−gc� plane, where c��−c3=c4=c5, and
search for the location of the peak of C. In Fig. 3, we present
the peak location of C for given disorder concentration p
=0.0,0.10,0.20. For p=0.0, the peak line expresses the
second-order transition as we saw in Figs. 1 and 2. We see
that the region of the normal �non-SC� state increases as
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FIG. 1. �Color online� Specific heat C for p=0 as a function of
g with c2=−c3=c4=c5=1. Error bars represent MC errors. System-
size dependence of its peak supports existence of a second-order
phase transition.

0 2 4 6 8 10
r

0

0.2

0.4

0.6

0.8

1

G
(r
)

g =0.5
g =0.4
g =0.3
g =0.2
g =0.1

FIG. 2. �Color online� Correlation function G�r� for various
values of g with c2,4,5=−c3=1. Critical coupling gc is estimated
gc=0.154 for L=20. Data show that for g�gc there exists SC LRO,
whereas g�gc no LRO.
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FIG. 3. �Color online� Location of the peak of C with L=12 and
Ns=30 in the gc2−g� �−c3=c4=c5� plane for p=0,0.10,0.20. The
region of disorder “phase” increases as p increases.
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p increases, although we need to check whether the location
of this peak expresses genuine SC transition for p�0. Below
we examine it by focusing on the specific case c2=−c3=c4

=c5=1 with the varying parameter g and calculate E, C,
G�r�, etc. Density of quenched disorder that we studied is
p=0.05,0.10,0.15, and 0.20.

We first present the result of C in Fig. 4. The signal of the
second-order phase transition at p=0 is getting weaker as p
is increased, and also the location of the peak moves to larger
g. Next, in Fig. 5, we present the system-size dependence
�SSD� of C for p=0.10,0.15, and 0.20. We also calculated
the derivative of C, D�g��gdC�g� /dg, to identify the order
of the phase transition. Results are shown in Fig. 6. From
these results, we judge that there exists a second-order tran-
sition for p�0.10 whereas it changes to a crossover for p
�0.20. The case of p=0.15 seems to have no SSD in C but
have certain SSD for D�g�. Therefore, the transition in the
p=0.15 case might be of third order.

To study if the SC state persists even for p�0.20, we
measured the SC correlation G�r� averaged over samples
with randomly generated ci

p. In Fig. 7 we present the results
for p=0.10,0.15, and 0.20. It supports that for p=0.10 there
exists the SC LRO for g�gc whereas for p=0.20 no LRO
for any values of g. This observation leads to the conclusion
that the SC phase disappears for p�0.20, i.e., there is a
multicritical point pmc near p=0.15 in the g− p phase dia-
gram.

It is interesting to ask what kind of phase is realized in the
region p� pmc and g�gcr, where gcr is the crossover cou-
pling determined by the peak location of the specific heat.
Probably, in the case of the doped AF magnets with strong
inhomogeneity, this phase may simply correspond to dirty
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FIG. 4. �Color online� Specific heat C for L=16 with Ns=30 vs
g for p=0.0, . . . ,0.20. Error bars here and below represent sample
errors. The peak around the SC phase transition is getting weaker as
p is increased. Location of the peak moves to larger g.
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FIG. 5. �Color online� The system size dependence of C with
Ns=30 for p=0.10,0.15,0.20. C for p=0.10 shows SSD, which
supports a second-order phase transition to SC state. C for p
=0.15 has less SSD, and C for p=0.20 shows no SSD for L
=16,24.
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FIG. 6. �Color online� D�g��gdC�g� /dg with Ns=30 vs g for
various L. �a�p=0.10; �b�p=0.15; �c�p=0.20. Cases �a� and �b�
show SSD, while the case �c� shows almost no SSD.
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FIG. 7. �Color online� SC correlation function G�r� for L=20
with Ns=50. �a�p=0.10; �b�p=0.15; �c�p=0.20. �d� G�r=10� for
�a�–�c� vs g. SC “transition point” gc is estimated from the specific
heat C as gc��a�0.168, �b�0.17, �c�0.18. �d� supports that LRO de-
velops for g�gc in �a�.
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“normal” metallic state. We think that the present model
given by Eq. �2� also describes the superfluid d-wave RVB

state of fermionic atoms in 2D optical lattice, which was
recently proposed by several authors.10 Random disorders
can be introduced into the systems by a laser speckle or by
an incommensurate bichromatic potential. In that experimen-
tal setup, there is an interesting possibility that a Bose glass
phase, which is an analog of the spin glass phase, is realized
there. For ultracold strongly interacting 87Rb bosons, a Bose
glass phase is suggested by experiments.2 In the experiments
of cold atom systems in optical lattices, the Bose glass phase
has no long-range coherence but excitations are gapless. In
Fig. 8, an expected phase diagram of the present lattice
model of dirty d-wave SC and superfluidity �SF� is shown.
We think that existence of the Bose glass phase is examined
theoretically by the standard analytical and numerical meth-
ods applied for spin glass.11,12
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